Squares, Triangles, and Van-Aubel’s Theorem
Problem
In
Proof
You supply the text :-). You will need the mid-segment theorem.
Squares are drawn on the the side of the quadrilateral. K, O, P, and N are the intersections of the diagonals of the square. Prove that KP = ON and that they are perpendicular to each other.
This challenge problem is actually called the Van-Aubel Theorem which states that that the two line segments between the centers of opposite squares constructed at the side of a quadrilateral are of equal lengths and that the lines through the centers are at right angles to one another. I created the first problem as hint towards one of its geometric proof. This theorem can also be proved using vectors and complex numbers.